Distinct and additive effects of sodium bicarbonate and continuous mild heat stress on fiber type shift via calcineurin/NFAT pathway in human skeletal myoblasts.

نویسندگان

  • Tetsuo Yamaguchi
  • Maiko Omori
  • Nobuho Tanaka
  • Naoshi Fukui
چکیده

Ingestion of sodium bicarbonate (NaHCO3) is known to enhance athletic performance, probably via increased extracellular buffering capacity. At present, little is known about the direct effects of NaHCO3 on myogenesis, especially in vitro. Here, we examined the effects of NaHCO3 and the combined effects of NaHCO3 and continuous mild heat stress (CMHS) at 39°C on the differentiation of human skeletal muscle myoblasts (HSMMs). Levels of myosin heavy chain (MyHC) type I mRNA increased with increasing NaHCO3 concentrations; in contrast, those of MyHC IIx decreased. The NaHCO3-induced fast-to-slow shift was additively enhanced by CMHS. Likewise, intracellular calcium levels and expression of three factors, nuclear factor of activated T cells c2 (NFATc2), NFATc4, and peroxisome-proliferator-activated receptor-γ coactivator-1α, were upregulated with increasing NaHCO3 concentrations; moreover, these effects of NaHCO3 were additively enhanced by CMHS. Overexpression experiments and small interfering RNA-mediated knockdown experiments confirmed that NFATc2 and NFATc4 were involved in MyHC I regulation. The present study provided evidence that NaHCO3 and CMHS distinctly and additively induced a fast-to-slow fiber type shift through changes in intracellular calcium levels and the modulation of calcium signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous mild heat stress induces differentiation of mammalian myoblasts, shifting fiber type from fast to slow.

Local hyperthermia has been widely used as physical therapy for a number of diseases such as inflammatory osteoarticular disorders, tendinitis, and muscle injury. Local hyperthermia is clinically applied to improve blood and lymphatic flow to decrease swelling of tissues (e.g., skeletal muscle). As for muscle repair following injury, the mechanisms underlying the beneficial effects of hyperther...

متن کامل

A calcineurin- and NFAT-dependent pathway regulates Myf5 gene expression in skeletal muscle reserve cells.

Myf5 is a member of the muscle regulatory factor family of transcription factors and plays an important role in the determination, development, and differentiation of skeletal muscle. However, factors that regulate the expression and activity of Myf5 itself are not well understood. Recently, a role for the calcium-dependent phosphatase calcineurin was suggested in three distinct pathways in ske...

متن کامل

Calsarcin-2 deficiency increases exercise capacity in mice through calcineurin/NFAT activation.

The composition of skeletal muscle, in terms of the relative number of slow- and fast-twitch fibers, is tightly regulated to enable an organism to respond and adapt to changing physical demands. The phosphatase calcineurin and its downstream targets, transcription factors of the nuclear factor of activated T cells (NFAT) family, play a critical role in this process by promoting the formation of...

متن کامل

System-level investigation into the regulatory mechanism of the calcineurin/NFAT signaling pathway.

Calcineurn/nuclear factor of the activated T cell (CaN/NFAT) signaling pathway plays crucial roles in the development of cardiac hypertrophy, Down's syndrome, and autoimmune diseases in response to pathological stimuli. The aim of the present study is to get a system-level understanding on the regulatory mechanism of CaN/NFAT signaling pathway in consideration of the controversial roles of myoc...

متن کامل

The calcineurin-NFAT pathway and muscle fiber-type gene expression.

To test for a role of the calcineurin-NFAT (nuclear factor of activated T cells) pathway in the regulation of fiber type-specific gene expression, slow and fast muscle-specific promoters were examined in C2C12 myotubes and in slow and fast muscle in the presence of calcineurin or NFAT2 expression plasmids. Overexpression of active calcineurin in myotubes induced both fast and slow muscle-specif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 305 3  شماره 

صفحات  -

تاریخ انتشار 2013